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SUMMARY

Passively administered anti-tumor monoclonal anti-
bodies (mAbs) rapidly kill tumor targets via FcgR-
mediated cytotoxicity (ADCC), a short-term process.
However, anti-tumor mAb treatment can also induce
avaccinal effect, inwhichmAb-mediated tumordeath
induces a long-term anti-tumor cellular immune
response. To determine how such responses are
generated, we utilized a murine model of an anti-tu-
mor vaccinal effect against a model neoantigen. We
demonstrate that FcgR expression by CD11c+ anti-
gen-presenting cells is required to generate anti-
tumor T cell responses upon ADCC-mediated tumor
clearance. Using FcgR-humanized mice, we demon-
strate that anti-tumor human (h)IgG1 must engage
hFcgRIIIA on macrophages to mediate ADCC, but
also engage hFcgRIIA, the sole hFcgR expressed by
human dendritic cells (DCs), to generate a potent
vaccinal effect. Thus, while next-generation anti-
tumor antibodies with enhanced binding to only
hFcgRIIIA are now in clinical use, ideal anti-tumor
antibodies must be optimized for both cytotoxic
effects as well as hFcgRIIA engagement on DCs to
stimulate long-term anti-tumor cellular immunity.
INTRODUCTION

Passive administration of anti-tumor antibodies is an important

clinical tool for the management of a variety of cancers (Pincetic

et al., 2014) and generally functions by targeting malignant

cells through Fc-receptor for IgG (FcgR)-mediated antibody-

dependent cellular cytotoxicity (ADCC) by myeloid effector cells

(Clynes et al., 2000; Taylor and Lindorfer, 2008; Uchida et al.,

2004) or possibly natural killer (NK) cells. Because of this

FcgR-mediated mechanism of action, next-generation versions

of anti-tumor mAbs that have been Fc-engineered for enhanced

engagement of activating hFcgRIIIA are now being used in the

clinic or are under investigation (Goede et al., 2014). However,

while ADCC-mediated tumor killing is rapid and relatively

short-acting, patients with some malignancies see long-term re-

sponses after cessation of antibody therapy; this has prompted

the hypothesis that a vaccinal or auto-immunization effect is initi-

ated, in which tumor targeting by a monoclonal antibody (mAb)
primes the patient’s immune system to generate an anti-tumor

T cell memory response (Cartron et al., 2004). Thus, it has

been demonstrated that cellular immune responses are gener-

ated in both mice and patients treated with anti-HER-2/neu

mAb (Park et al., 2010; Taylor et al., 2007). Anti-MUC1 cellular

immune responses have also been reported after the use of

anti-MUC1 mAb in patients with MUC1+ tumors (de Bono

et al., 2004). Evidence in lymphoma patients suggests that a

vaccinal effect can be generated by anti-human (h)CD20 mAb

immunotherapy (rituximab), since a single course of treatment

with mAb can result in long-lasting, durable responses (Cartron

et al., 2004). In support of this, it has been reported that some pa-

tients treated with rituximab developed lymphoma-specific anti-

idiotype T cell responses after mAb treatment (Hilchey et al.,

2009). Recent studies in mice have also demonstrated that pas-

sive administration of anti-CD20 mAbs can initiate anti-tumor

cellular immune responses (Abès et al., 2010). Therefore, while

the hypothesis of a tumor-specific antibody-induced anti-tumor

vaccinal effect has persisted for more than a decade, an exper-

imentally derived mechanistic explanation is lacking.

New technologies have enabled the identification of tumor

mutational signatures, some common across multiple cancer

types while others are restricted to specific malignancies (Alex-

androv et al., 2013). Thus, mutation-induced, developmentally

restricted, or overexpressed tumor neoantigens are a major

target of tumor-infiltrating lymphocytes in patients (Fritsch

et al., 2014; Tran et al., 2014). Neoantigen-specific CD4+ and

CD8+ T cells have been identified, showing that such antigens

are indeed processed and presented (Gros et al., 2014; van Rooij

et al., 2013). Further, new immune-checkpoint blockade thera-

pies function in patients by amplifying neoantigen-specific re-

sponses (van Rooij et al., 2013). However, although studies

analyzing antibody responses to tumor neoantigens are lacking,

antibody:antigen immune complexes can stimulate cellular im-

munity by engaging activating FcgRs on antigen-presenting

cells, such as dendritic cells (DCs), to induce DC maturation,

traditional antigen presentation and cross-presentation, co-

stimulatory molecule upregulation, and stimulate cellular im-

mune responses in bothmice (Kalergis and Ravetch, 2002; Rafiq

et al., 2002) and humans (Boruchov et al., 2005; Dhodapkar

et al., 2005). Often, antibody:antigen immune complex immuni-

zation results in more potent cross-presentation and CD4 or

CD8 T cell responses than antigen immunization alone. Thus, a

logical approach to boosting cellular immune responses involves

passive administration of antibodies reactive with tumor anti-

gens or tumor neoantigens. Therefore, in this current study, we

utilize a tumor model expressing a model tumor neoantigen to
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test whether and how passive anti-tumor antibody treatment

stimulates an anti-tumor vaccinal effect and cellular immune

response.

Three activating FcgRs are expressed in mice (mouse

[m]FcgRI, mFcgRIII, and mFcgRIV) and humans (hFcgRI,

hFcgRIIA, and hFcgRIIIA), and a single inhibitory FcgR, FcgRIIB,

is expressed in both species. The cellular outcome of IgG inter-

actions with FcgRs is governed by the affinity of an antibody’s Fc

for the specific receptor and the expression pattern of those re-

ceptors on effector cells (Nimmerjahn and Ravetch, 2008). Since

most effector cells co-express activation and inhibitory FcgRs, it

is the ratio of the binding affinities of a specific IgG Fc to these

receptors that will determine the outcome of the IgG-FcgR inter-

action. These binding affinities are determined by the amino acid

sequences of the IgG Fc subclasses and the IgG Fc’s N-linked

glycan. The IgG Fc composition can dramatically influence the

in vivo outcome of engaging a tumor antigen by directing the

antibody-antigen immune complex or opsonized cell into either

a pro- or anti-inflammatory response. For example, mIgG2a

antibodies trigger cytotoxicity by virtue of this Fc having a

2-log greater affinity for the activating mFcgRIV receptor as

compared to the inhibitorymFcgRIIb receptor, whilemIgG1 pref-

erentially engages the inhibitory mFcgRIIb receptor.

Mice and humans differ regarding the specific FcgRs ex-

pressed on various antigen-presenting cells and the relative

affinities of each IgG Fc subclass for each FcgR (Nimmerjahn

and Ravetch, 2007). Thus, hIgG1 Fc does not preferentially

engage a single hFcgR, as occurs in mice. Two low-affinity

activating FcgRs are expressed on monocytes and macro-

phages in both mice (mFcgRIII and mFcgRIV) and humans

(hFcgRIIA and hFcgRIIIA). Murine NK cells express only

mFcgRIII, while human NK cells express only hFcgRIIIA. Impor-

tantly, while mice express two low-affinity activating FcgRs,

mFcgRIII and mFcgRIV, on DCs, humans only express one

low-affinity activating FcgR on DCs, hFcgRIIA. Because of

these species differences, we have generated FcgR-human-

ized mice, which express the full array of hFcgRs on a back-

ground lacking all murine FcgRs (Smith et al., 2012). Appro-

priate cell-type-specific expression of all hFcgRs is observed

in the FcgR-humanized mice, allowing the characterization of

hIgG1 antibody-mediated effector function in the context of hu-

man FcgRs.

Here, using a murine lymphoma expressing a model tumor

neoantigen (hCD20), we mechanistically dissect how an anti-

tumor cellular immune response is generated after passive

treatment of lymphoma-bearing mice with anti-hCD20 mAb.

We demonstrate that not only are activating FcgRs required

for macrophage-mediated ADCC, but activating FcgR expres-

sion specifically on CD11c+ antigen-presenting cells is required

for the generation of an anti-tumor T cell memory immune

response and long-term survival. Because of the complexity of

the FcgR system, with multiple genes expressed and regulated

differentially on the diverse cells of the immune system,

designing an anti-tumor antibody for optimal activity requires

compatible model systems. We therefore assessed the genera-

tion of an anti-tumor vaccinal effect for a hIgG1 anti-hCD20 mAb

in FcgR-humanized mice. We show that anti-tumor mAb must

engage hFcgRIIIA on clodronate liposome (CLOD)-sensitive
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macrophages to mediate immediate ADCC, as well as hFcgRIIA

(the sole FcgR expressed by human DCs) in order to stimulate a

long-term anti-tumor cellular immune response. Thus, while

next-generation anti-tumor antibodies with enhanced binding

to only hFcgRIIIA on innate effector cells are now in clinical

use, our results indicate that anti-tumor antibodies with optimal

long-term survival benefit must be optimized for both their

short-acting cytotoxic effects through hFcgRIIIA, as well as for

engagement of hFcgRIIA on DCs to stimulate long-term anti-

tumor cellular immunity.

RESULTS

Generation of an Anti-tumor Vaccinal Effect by Passive
Anti-tumor Antibody Treatment
To understand how passive anti-tumor mAb treatment can

induce long-term anti-tumor cellular immune responses, we

adapted a murine lymphoma model (Abès et al., 2010) of an

anti-neoantigen mAb-mediated vaccinal effect (Figure 1A).

Wild-type C57BL/6 mice were given syngenic EL4 lymphoma

cells that express hCD20 as a tumor neoantigen (EL4-hCD20

cells), followed by mIgG2a isotype anti-hCD20 mAb. The

mIgG2a isotype preferentially engages activating mFcgRs and

is the most potent mouse subclass for triggering effector cells

to result in cellular cytotoxicity, phagocytosis, and inflammatory

responses (Nimmerjahn and Ravetch, 2005; Pincetic et al.,

2014). Mice receiving lymphoma cells plus anti-hCD20 mAb

clear the tumors and survive in an activating FcgR-dependent

manner; wild-type mice survive the tumor challenge, while

FcRa null (Smith et al., 2012) mice (that lack all mFcgRs:mFcgRI,

mFcgRIIB, mFcgRIII, and mFcgRIV) and Fcer1g�/� mice (that

lack all activating mFcgRs: mFcgRI, mFcgRIII, and mFcgRIV)

do not (Figures 1B and S1A). The activating mFcgRIV is a major

contributor during this clearance of tumor cells, since only 52%

of Fcgr4�/� mice survive tumor challenge after anti-hCD20 mAb

treatment (p < 0.001; Figure S1B). Non-FcgR binding DA265

mutant anti-hCD20was also unable to clear tumors (Figure S1C).

Thus, activating FcgRs mediate the initial ADCC clearance of tu-

mor cells by anti-tumor mAb, as reported (Clynes et al., 2000;

Uchida et al., 2004).

We next assessed whether an anti-tumor vaccinal effect

was generated in mice that survived the initial EL4-hCD20

challenge via treatment with anti-hCD20 mAb. Ninety days after

the initial challenge when anti-hCD20 mAb had been cleared

(mIgG2a half-life = 7 days) (Vieira and Rajewsky, 1988), surviving

tumor/mAb-primed mice were re-challenged with 5 3 106 EL4-

hCD20 tumor cells, a dose that is 10-fold greater than the initial

challenge, without treatment with any additional anti-hCD20

mAb. These primed mice showed 100% survival during re-chal-

lenge with EL4-hCD20 cells (Figure 1C). By contrast, surviving

tumor/mAb-primed mice re-challenged with EL4-WT cells,

which do not express hCD20, showed poor survival. Similar re-

sults were seen using a different anti-hCD20 mAb, clone 2B8,

which is the parental hybridoma from which rituximab was

generated (Figures S1D and S1E). Thus, mice primed with

EL4-hCD20 and anti-hCD20 mAb generate a memory immune

response and subsequently reject re-challenge with EL4-

hCD20 cells, but not EL4 WT cells.
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Figure 1. Fc-FcgR Interactions Are Required

for the Clearance of Lymphoma by mAb and

the Initiation of an Anti-tumor Vaccinal Effect

(A) Experimental protocol. Mice were injected i.v.

with 5 3 105 EL4-hCD20 lymphoma cells on day

0 (red arrow) and received 100 mg of mIgG2a iso-

type anti-hCD20 mAb (clone CAT13.6E12) on days

1, 4, 7, 10, and 13 (blue arrows). On day 90, sur-

viving mice were re-challenged i.v. with 5 3 106

EL4-hCD20 lymphoma cells (green arrow) or EL4-

WT cells, a 10-fold greater dose of tumor compared

to the primary lymphoma challenge, and survival

was monitored daily. Alternatively, surviving mice

were re-challenged with 5 3 104 B6BL-hCD20 or

B6BL-mCD20 cells i.v.

(B) Wild-type (red circles) or FcRa null mice (blue

squares) were injected with EL4-hCD20 cells and

treated with mIgG2a isotype anti-hCD20 mAb, with

survival assessed daily (n = 9–11 mice per group).

(C) After 90 days, surviving (primed) mice treated

with mIgG2a anti-hCD20 mAb from (B) were re-

challenged with EL4-hCD20 cells (green circles) or

EL4-WT cells (blue squares) with survival assessed

daily. For comparison, naive mice were also chal-

lenged with EL4-hCD20 cells (gray diamonds) or

EL4-WT cells (filled triangles). n = 10–13 mice per

group.

(D) Mice were primed with EL4-hCD20 lymphoma

cells and mAb as in (A) and (B) before re-challenge

on day 90 with B6BL tumor cells expressing either

hCD20 (green circles) or mCD20 (blue squares).

n = 10 mice per group.
In this model of the vaccinal effect, both CD4+ and CD8+

T cells are required after antibody treatment in order to reject

the tumor re-challenge (Abès et al., 2010). Specifically, T cell

depletion studies demonstrated that CD4+ T cells are required

during the initial phases of antibody therapy as well as during

tumor re-challenge in order to reject tumors. Using CD8-defi-

cient mice, it was also shown that CD8+ cells are required for

tumor rejection during re-challenge. By contrast, mice do not

mount any detectable antibody response against hCD20 or

EL4-hCD20 cells, and adoptive transfer of serum from tumor/

mAb-primed mice does not protect against tumor challenge

(Abès et al., 2010). In Figure 1C, we show that EL4-hCD20/

anti-hCD20 mAb-primed mice only reject EL4-hCD20 cells,

and not wild-type EL4 cells, suggesting that the vaccinal effect

is directed against hCD20, with little detectable antigen

spreading. To confirm that at least a portion of the vaccinal

effect cellular immune response is directed at hCD20, mice

primed with EL4-hCD20 cells and anti-hCD20 mAb were

re-challenged with a distinct tumor cell line, B6BL lymphoma

cells, that expressed either cell-surface hCD20 or an irrelevant

antigen (mCD20). While 100% of mice re-challenged with

B6BL-mCD20 died by day 31, 80% of mice re-challenged with
Cell 161, 1035–10
B6BL-hCD20 cells survived at least

90 days (Figure 1D; p = 0.0001). Thus,

only cells expressing hCD20 were capable

of being rejected. Collectively, these

experiments demonstrate that an anti-
hCD20 immune response is generated after the initial FcgR-

mediated clearance of tumor cells by ADCC.

Expression of mFcgRIV on CD11c+ Cells Is Required for
the Generation of an Anti-tumor Vaccinal Effect
To understand the mechanistic basis for an anti-tumor vaccinal

effect and to determine whether FcgR expression plays a

role during this process, we utilizedmicewith aCD11c+ cell-spe-

cific deletion of mFcgRIV. Fcgr4fl/fl;cd11c-cre mice (Nimmerjahn

et al., 2010) show a complete absence of mFcgRIV expres-

sion on spleen CD11chi DCs, but only a partial decrease in

mFcgRIV expression on spleen CD11b+Gr-1loSSClo monocytes

(Figure 2A). All CD11chi cells lose mFcgRIV expression in

Fcgr4fl/fl;cd11c-cre mice, while spleen CD11cint cells show partial

loss ofmFcgRIV andCD11c� cells show only amodest decrease

in mFcgRIV (Figure S2A; Table S1). Themajority of CD11chiCD8+

DCs and a fraction of CD11chiCD4+ DCs express mFcgRIV,

both of which lose all mFcgRIV expression in Fcgr4fl/fl;cd11c-cre

mice (Figure S2E). While the majority of CD11cint/�CD11bint cells

lose expression of mFcgRIV, only a modest reduction in

mFcgRIV is seen in CD11cint/�CD11bhi cells in Fcgr4fl/fl;cd11c-cre

mice (Figure S2B). Expression of mFcgRIV is not affected in
45, May 21, 2015 ª2015 Elsevier Inc. 1037
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Figure 2. Expression ofmFcgRIV onCD11c+Cells Is Required for the

Generation of an Anti-tumor Vaccinal Effect

(A) mFcgRIV expression levels on spleen innate cell subsets. Spleen lym-

phocytes were harvested from Fcgr4fl/fl (red line), Fcgr4fl/fl;cd11c-cre (blue line),

or Fcgr4�/� (shaded line) mice, and mFcgRIV expression levels on CD11c+

dendritic cells and CD11b+Gr-1lowSSClow resident monocytes was assessed.

Representative flow cytometry histograms from three independent experi-

ments are shown.

(B) Fcgr4fl/fl (red circles; n = 15) or Fcgr4fl/fl;cd11c-cre (blue squares; n = 14) mice

were given EL4-hCD20 cells and treated with mIgG2a anti-hCD20 mAb, with

survival monitored daily.

(C) After 90 days, surviving Fcgr4fl/fl (green circles) or Fcgr4fl/fl;cd11c-cre (blue

squares) mice treated with mIgG2a isotype anti-hCD20 mAb from (B) were re-

challenged with EL4-hCD20 cells, with survival assessed daily (n = 14–16mice

per group). Significant differences between groups are indicated: **p = 0.0065;

n.s., not significant.

See also Table S1.
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Ly6G+ neutrophils (Figure S2C). Most CD11b+CD11cint/-F4/80hi

macrophages lose mFcgRIV expression in Fcgr4fl/fl;cd11c-cre

mice, as these cells express CD11c at intermediate levels (Fig-

ure S2D). Similar results demonstrating decreases in mFcgRIV

expression on CD11c+ cells and lesser decreases in CD11b+

or F4/80+ cells were seen in bone marrow, peritoneal cavity,

and peripheral blood from Fcgr4fl/fl;cd11c-cre mice (Figures S3,

S4, and S5; Table S1). Therefore, because mFcgRIV expression

wasmaintained to a sufficient degree on ADCC-mediating innate

cells, both control Fcgr4fl/fl and Fcgr4fl/fl;cd11c-cre mice were able

to clear primary EL4-hCD20 lymphoma cell challenge after treat-

ment with anti-hCD20 mAb (Figure 2B), indicating that mFcgRIV

expression on CD11c+ cells is not required for anti-hCD20

mAb-mediated ADCC.

Toassess thegenerationof theanti-hCD20vaccinal effect in the

context of CD11c+ cells lacking mFcgRIV, surviving tumor/mAb-

primed Fcgr4fl/fl and Fcgr4fl/fl;cd11c-cre mice were re-challenged

with EL4-hCD20 cells. Re-challenge of primed Fcgr4fl/fl mice re-

sulted in 100% survival (Figure 2C). By contrast, only 57% of tu-

mor/mAb-primed Fcgr4fl/fl;cd11c-cre mice survived re-challenge

with EL4-hCD20 cells (p = 0.0069). It is likely that activating

mFcgRIII, which is also expressed on murine DCs, compensates

in the absence of mFcgRIV, thereby explaining why a modest

vaccinal effect remains inFcgr4fl/fl;cd11c-cremice. Thus, expression

of the IgG2a-preferential activating mFcgRIV on CD11c+ antigen-

presenting cells is required for the generation of the anti-tumor

vaccinal effect after mAb-mediated killing of tumor cells.

CD11c+ Cell Expression of mFcgRIV Is Required to
Generate Anti-tumor Cellular Immunity
To quantify anti-tumor cellular immunity in vivo, we performed

adoptive transfer experiments (Figure 3A). Mice were given

EL4-hCD20 cells and mIgG2a anti-hCD20 mAb, with spleens

harvested and total splenocytes or CD3+ T cells isolated and

adoptively transferred into naive mice that were then challenged

with EL4-hCD20 cells. Adoptive transfer of splenocytes or T cells

from naive mice was unable to protect against tumor growth,

but transfer of splenocytes or T cells from tumor/mAb-primed

mice resulted in 80% (p = 0.0044) and 75% (p = 0.0067)

survival, respectively (Figure 3B). Thus, tumor/mAb-primed

mice generate a quantifiable anti-tumor T cell response.

To determine whether DC expression of mFcgRIV is required

for the generation of the anti-tumor cellular immune response

after passive administration of anti-tumor mAb, tumor/mAb-

primed splenocytes from Fcgr4fl/fl and Fcgr4fl/fl;cd11c-cre mice

were adoptively transferred into naive mice before challenge

with EL4-hCD20 cells. While 76% of mice receiving splenocytes

from tumor/mAb-primed Fcgr4fl/fl mice survived EL4-hCD20

challenge, only 34% of tumor/mAb-primed Fcgr4fl/fl;cd11c-cre

mice survived the challenge (p = 0.0041; Figure 3C). Thus,

expression of mFcgRIV on CD11c+ antigen-presenting cells is

required to mediate the generation of an anti-tumor cellular im-

mune response after mAb-mediated clearance of tumor.

hFcgRIIIA Mediates ADCC of hIgG1 mAb-Targeted
Tumor Cells in FcgR-Humanized Mice
Fc receptors for mouse IgG are heterogeneous, differing in their

binding affinities for IgG subclasses, their expression patterns on
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Figure 3. CD11c+ Cell-Specific Expression of mFcgRIV Is Required

for the Generation of Anti-tumor Cellular Immunity

(A) Experimental protocol. Mice were injected i.v. with EL4-hCD20 lymphoma

cells on day 0 (red arrow) and receivedmIgG2a anti-hCD20mAb (blue arrows).

On day 30, spleens were harvested and total splenocytes were isolated or

CD3+ cells were purified. Then, 50 3 106 total splenocytes or 15 3 106 CD3+

cells were adoptively transferred into naive mice one day before i.v. challenge

with EL4-hCD20 lymphoma cells (green arrow).

(B) Survival was measured in naive mice receiving CD3+ cells (green filled

circles) or total splenocytes (green open circles) from tumor and mAb-primed

wild-type mice, or CD3+ cells (blue filled squares) or total splenocytes (blue

open squares) from naive mice. Another group of naive mice received no

adoptive transfer (black triangles). n = 4–6 mice per group.

(C) Survival in naive mice receiving total splenocytes from tumor and mAb-

primed Fcgr4fl/fl (green circles; n = 25) or Fcgr4fl/fl;cd11c-cre (blue squares,

n = 34) mice before EL4-hCD20 cell challenge. Other groups of naive mice

received splenocytes from naive mice (black triangles; n = 7) or no adoptive

transfer (gray diamonds; n = 15). Significant differences between groups are

indicated: **p = 0.0041.
immune cells, and signaling properties (Nimmerjahn and Rav-

etch, 2006; Pincetic et al., 2014). For example, NK cells in the

mouse express only mFcgRIII, a low-affinity activating FcgR.

Macrophages and DCs express distinct combinations of both

activating (mFcgRI, mFcgRIII, and mFcgRIV) and inhibitory

(mFcgRIIB) receptors. Individual mouse subclasses show pref-

erential mFcgR binding affinities, with mIgG1 preferentially

engaging the inhibitory mFcgRIIB while mIgG2a engages the

activating receptor mFcgRIV with a 2 log higher affinity (Nimmer-

jahn and Ravetch, 2008, 2011). Thus, selecting an antibody for

optimal FcgR engagement requires consideration of the recep-

tors and cell types that are to be engaged.

Further complicating this situation are the inter-species differ-

ences between mice and humans. Human FcgR genes, expres-

sion patterns, and affinities for the various antibody isotypes

differ significantly from mice. Importantly, humans express only

the low-affinity activating FcgR—FcgRIIIA—on NK cells, the

cells that are thought to primarily mediate cellular cytotoxicity

in humans (Seidel et al., 2013), while antigen-presenting DCs ex-

press a single, distinct low-affinity activating FcgR, hFcgRIIA

(Boruchov et al., 2005; Nimmerjahn and Ravetch, 2008).

Therefore, to engineer an antibody to optimize the generation

of an anti-tumor vaccinal effect initiated by a hIgG1 antibody in

the context of hFcgRs, we utilized FcgR-humanized mice,

which express the full array of hFcgRs on a fully immunocompe-

tent C57BL/6 background lacking all mFcgRs (Bournazos

et al., 2014a; Smith et al., 2012). FcgR-humanized mice re-

capitulate hFcgR expression patterns in mouse tissues; spleen

CD11chi DCs express only hFcgRIIA and hFcgRIIB, but do

not express hFcgRIIIA, while spleen CD11b+Ly6G�Ly6Chi

and CD11b+Ly6G�Ly6Cint/� monocytes express hFcgRIIIA,

hFcgRIIA and hFcgRIIB in various combinations (Figures 4,

S6A, and S6B).

To address the relative contributions of individual hFcgRs dur-

ing mAb-mediated clearance of primary tumor challenge and

during the generation of an anti-tumor vaccinal effect, we gener-

ated anti-hCD20mAb with a hIgG1 Fc backbone and introduced

known point mutations (Bournazos et al., 2014b; DiLillo et al.,

2014; Smith et al., 2012) that selectively enhance interactions

with individual hFcgRs (Figure 5A; Table S2). Thus, the G236A

(GA) mutant shows selectively enhanced binding to hFcgRIIA,

the A330L/I332E (ALIE) mutant shows selectively enhanced

binding to hFcgRIIIA, and the G236A/S239D/A330L/I332E (GAS-

DALIE) mutant shows dramatically enhanced engagement to

both hFcgRIIA and hFcgRIIIA.

To determine which hFcgRs are responsible for the initial

ADCC-mediated clearance of tumor cells, FcgR-humanized

mice were given EL4-hCD20 lymphoma cells and were treated

with the various Fc-engineered hIgG1 anti-hCD20 mAbs. The

GA mutant anti-hCD20 mAb that selectively engages hFcgRIIA

was unable to clear tumor, as 81% of mice receiving this anti-

body died after primary tumor challenge (Figure 5B). By contrast,

82% and 85% of mice receiving ALIE mutant (selectively

engaging hFcgRIIIA) andGASDALIEmutant (selectively enhance

both hFcgRIIA and hFcgRIIIA) anti-hCD20 mAb survived the

primary EL4-hCD20 tumor challenge, respectively. Further,

mice expressing only hFcgRIIA (deficient for murine FcgRs)

were unable to clear the primary tumor challenge after mAb
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Figure 4. Human FcgRExpression on Innate

Cells in FcgR-Humanized Mice

(A) Representative flow cytometry dot plots

show hFcgRIIA versus hFcgRIIIA/B expression on

spleen cells from FcgR-humanized or FcRa null

mice. Numbers represent the frequency of cells in

the indicated gate.

(B) DCs and monocytes from FcgR-humanized

mouse spleens (red lines) were stained for

hFcgRIIA, hFcgRIIIA/B, or hFcgRIIB. Background

staining by hFcgR� cells is shown (gray lines).

(C) Frequencies (±SEM) of hFcgR+ cells among

spleen DCs and monocytes (n = 3 per group), with

frequencies generated by background staining

subtracted.
treatment, while mice expressing only hFcgRIIIA and hFcgRIIIB

(deficient for murine FcgRs) showed full survival when treated

with GASDALIE mutant anti-hCD20 mAb (Figure 5C). Notably,

wild-type hIgG1 anti-hCD20 mAb does not protect FcgR-

humanized mice or mice expressing either hFcgRIIA or

hFcgRIIIA/B from EL4-hCD20 tumor challenge (Figures S6C

and S6D), indicating that wild-type interactions between these

hFcgRs and hIgG1 provide insufficient signaling to mediate

effector functions at the doses used in this mouse model. Taken

together, these results demonstrate that while hFcgRIIA is

dispensable, hFcgRIIIA is both necessary and sufficient for

mAb-mediated clearance of primary tumor challenge.

Clodronate Liposome-Sensitive Macrophages Mediate
ADCC in the Context of hIgG1 and the Human FcgR
System
In the context of the mouse FcgR system, clodronate liposome

(CLOD)-sensitive macrophages mediate ADCC of antibody-

coated target cells (Uchida et al., 2004). NK cells are dispensable

for ADCC in this context, presumably because they do not ex-

press mFcgRI or mFcgRIV, but only express the low-affinity

FcgR, FcgRIII, which interacts with msIgG2a antibodies with

�40-fold lower affinity than mFcgRIV (Otten et al., 2008). How-

ever, we now show that hFcgRIIIA mediates ADCC in vivo by
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hIgG1 antibody. Because hFcgRIIIA is ex-

pressed on both NK cells andmonocytes/

macrophages in FcgR-humanized mice

(and humans), we determined whether

CLOD-sensitive macrophages mediate

ADCC of mAb-coated target cells in the

context of the human FcgR system and

human IgG1. CLOD decreased total

numbers of splenic CD11bintF4/80hi red

pulp macrophages by >90% (Figure S6E;

p < 0.0001).With the exception of CD11chi

DCs (33% depletion, p = 0.01), no

other cellular populations analyzed were

affected by CLOD treatment (Figure S6F).

We first confirmed that depletion of

blood and spleen B220+ B cells in

hCD20-Tg mice (these mice express

hCD20 on mature B cells and also ex-

press the full array of murine FcgRs) by mIgG2a isotype anti-

hCD20 was dependent on CLOD-sensitive macrophages. Blood

and spleen B cell numbers were decreased by 97.5%–98% and

63%–78% (p < 0.0001; Figure S7A), respectively, in mice

receiving either PBS or control liposomes plus mIgG2a anti-

hCD20 mAb. By contrast, no B cells were depleted in mice

receiving CLOD plus mIgG2a anti-hCD20 mAb. Thus, as

described (Uchida et al., 2004), ADCC of antibody-coated cells

in vivo requires CLOD-sensitive macrophage populations.

We next tested the ability of hIgG1 (GASDALIE mutant) anti-

hCD20 mAb to deplete hCD20+ B cells in the context of the

human FcgR system in hCD20-Tg/FcgR-humanized mice (these

mice express hCD20 on mature B cells and also express the full

array of human FcgRs, but lack all murine FcgRs), as described

above. Blood and spleen B cell numbers were decreased by

86%–90% and 81%–82% (p < 0.001), respectively, in hCD20-

Tg/FcgR-humanized mice receiving either PBS or control lipo-

somes plus hIgG1 (GASDALIE) anti-hCD20 mAb. By contrast,

no B cells were depleted inmice receiving CLODplus GASDALIE

anti-hCD20 mAb (Figure S7B). Similar results were seen in

FcgR-humanized mice treated with CLOD and a depleting

hIgG1 (GASDALIE) anti-mCD4 mAb (Figure S7C). Therefore,

CLOD-sensitive macrophages are required for ADCC mediated

by hIgG1 antibody in the context of the human FcgR system.
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Figure 5. Differential hFcgR Engagement Mediates Tumor

Cytotoxicity

(A) Anti-hCD20 hIgG1 mAb Fc mutants for selectively enhanced engagement

of hFcgRs. Relative binding capabilities to the indicated hFcgRs are shown,

based on binding affinities from biacore experiments (Table S2).

(B) hFcgRIIIA engagement mediates cytotoxic clearance of tumor cells by

mAb. FcgR-humanized mice were given EL4-hCD20 cells and treated with

hIgG1 mutant versions of anti-hCD20 mAb: GASDALIE mutant (enhanced

engagement of hFcgRIIA and hFcgRIIIA; red circles; n = 20), GA mutant

(preferential hFcgRIIA engagement; blue squares; n = 6), ALIE mutant (pref-

erential hFcgRIIIA engagement; gray diamonds; n = 12), or PBS (black tri-

angles; n = 17), with survival monitored daily.

(C) hFcgRIIIA is necessary and sufficient to mediate the immediate cytotoxic

clearance of EL4-hCD20 lymphoma cells. EL4-hCD20 cells were injected into

hFCGR2A-Tg mice that were given GASDALIE mutant anti-hCD20 mAb (filled

red circles; n = 11), hFCGR3A/B-Tg mice given GASDALIE mutant anti-hCD20

mAb (filled blue squares; n = 11), or wild-type mice given PBS (filled triangles;

n = 10) with survival monitored daily.
hFcgRIIA Engagement by Anti-tumor mAb Mediates the
Generation of the Anti-tumor Vaccinal Effect in FcgR-
Humanized Mice
Finally, we assessed to what extent the anti-tumor vaccinal

effect was generated in FcgR-humanized mice (Figure 6A)

treated with anti-hCD20 mAb mutants that selectively engage

only hFcgRIIIA (ALIE mutant) or both hFcgRIIA and hFcgRIIIA

(GASDALIE mutant). Only 20% of FcgR-humanized mice

receiving ALIE mutant anti-hCD20 mAb survived re-challenge

with EL4-hCD20 cells, while 77% of mice receiving GASDALIE

mutant anti-hCD20 mAb survived re-challenge (p < 0.0001; Fig-

ure 6B). Further, only 36% (p = 0.01) of hFcgRIIIA/B-Tgmice (that

lack all murine FcgRs and express only hFcgRIIIA and hFcgRIIIB)

survive EL4-hCD20 re-challenge, again demonstrating that

expression of hFcgRIIA is required for optimal induction of an

anti-tumor vaccinal effect. Thus, engagement of hFcgRIIA,

which is the only activating hFcgR expressed by human DCs,

is required for the generation of an anti-tumor vaccinal effect

by passively administered anti-tumor mAb.

DISCUSSION

It has long been hypothesized that passive administration of anti-

tumor antibodies may generate immune complexes that, upon

uptake by antigen-presenting cells, stimulate anti-tumor cellular

immunity. Taken together, our results now mechanistically

demonstrate how passively administered anti-tumor antibody

achieves such an effect using a lymphoma cell line that ex-

presses a model tumor neoantigen. Anti-tumor mAb opsonizes

tumor cells and targets them for killing by FcgR-mediated

ADCC, a process that generates antibody:tumor antigen im-

mune complexes. These immune complexes engage activating

FcgRs expressed by CD11c+ antigen-presenting cells, which re-

sults in stimulation of DC maturation and presentation of tumor

antigens to T cells, thereby leading to long-term anti-tumor

cellular memory formation (Figure 7) (Boruchov et al., 2005; Dho-

dapkar et al., 2005; Kalergis andRavetch, 2002; Nimmerjahn and

Ravetch, 2008). In the human FcgR system, the vaccinal effect

requires interactions with hFcgRIIA, the sole activating FcgR ex-

pressed by DCs. Thus, these results nowmechanistically explain

how passively administered anti-tumor mAb stimulates anti-tu-

mor cellular immune responses in vivo and suggest novel

methods for augmenting such an effect.

It is clear that activating FcgRs expressed by antigen-pre-

senting cells, especially DCs, are capable of capturing anti-

body/tumor antigen immune complexes. Upon immune complex

binding, DCs undergo maturation, upregulate MHC-II and co-

stimulatory molecules, and stimulate CD4 and CD8 T cells

responses through traditional antigen presentation and cross-

presentation (Nimmerjahn and Ravetch, 2008; Rafiq et al.,

2002). DCs loaded with antibody/tumor antigen immune com-

plexes stimulate potent T cell responses that are capable of

eradicating tumors (Kalergis and Ravetch, 2002). In vitro studies

have demonstrated that anti-CD20 mAb treatment of lymphoma

cells stimulates DC maturation and CD8 T cell activation (Se-

lenko et al., 2002), and a synergistic effect between vaccination

with hCD20+ tumor cells and anti-hCD20 mAb treatment has

been demonstrated in mice (Gadri et al., 2009). CD8+ DCs are
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Figure 6. Selective Engagement of hFcgRIIA Mediates an Anti-

tumor Vaccinal Effect

(A) Experimental protocol. FcgR-humanized mice were injected i.v. with 5 3

105 EL4-hCD20 lymphoma cells on day 0 (red arrow) and received 250 mg of

hIgG1 mutant anti-hCD20 mAb on days 1 and 2 (blue arrows). On day 60,

surviving mice were re-challenged i.v. with 5 3 106 EL4-hCD20 lymphoma

cells (green arrow), and survival was monitored daily.

(B) Surviving tumor-primed mice that received GASDALIE hIgG1 anti-hCD20

mAb (green circles; n = 28) or ALIE hIgG1 anti-hCD20 mAb (blue squares; n =

10) from Figure 5B, or naive mice (black triangles; n = 15) were re-challenged

with EL4-hCD20 cells.

(C) Surviving tumor-primed FcgR-humanized (green circles; n = 28) or

hFcgRIIIA/B-Tg mice (blue squares, n = 11) that received GASDALIE hIgG1

anti-hCD20mAb fromFigure 5C, or naivemice (black triangles; n = 10) were re-

challenged with EL4-hCD20 cells. Significant differences between groups are

indicated: **p < 0.01.
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Figure 7. Model for the Generation of an Anti-tumor Vaccinal Effect

Anti-tumor mAb opsonizes tumor cells and targets them for killing by FcgR-

mediated ADCC, a process that generates antibody:tumor antigen immune

complexes. These immune complexes engage activating FcgRs expressed by

mouse or human CD11c+ cells, which results in stimulation of DC maturation

and presentation of tumor antigens to T cells, thereby leading to long-term

anti-tumor cellular memory formation.
considered to be excellent cross-presenters of cell-associated

antigens (Mayer et al., 2014), and soluble immune complexes

stimulate cross-presentation by DCs more potently than antigen

alone (Berlyn et al., 2001; Rafiq et al., 2002). Correspondingly, a
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much larger fraction of CD8+ spleen CD11chi cells expresses

mFcgRIV compared to CD8�CD11chi cells (60% versus 28%,

Figure S2E), suggesting that CD8+ DCs may play a significant

role during the induction of the mAb-mediated anti-tumor

vaccinal effect. Further, clinical trials have shown that combining

anti-CD20 mAb treatment with administration of immunomodu-

latory cytokines that promote the activation of DCs or T cell re-

sponses, such as IFN-a (Kimby et al., 2008) or GM-CSF (Cartron

et al., 2008), synergistically increased anti-CD20 mAb efficacy,

suggesting that augmenting antigen presentation and T cell re-

sponses in the context of anti-tumor mAb therapy may augment

an anti-tumor vaccinal effect. Murine studies have also demon-

strated a heightened vaccinal effect when administration of the

pleiotropic cytokine IL-2, which activates both innate cells and

T cells, is combined with anti-hCD20 mAb treatment (Abès

et al., 2010). Thus, our studies now mechanistically explain

how the anti-tumor cellular immune responses generated by

passive antibody treatment are generated in vivo.

While healthy individuals are normally tolerized to self-antigens

suchasCD20andwouldnot developmemoryT cells reactivewith

self-antigens, cancer-bearing patients often break tolerance and

autoimmunedisordersarecommon in thesepatients (Abu-Shakra

et al., 2001). Thus, while tolerance to overexpressed antigens, on-

coproteins, tumor suppressorproteins,differentiationantigens, or

neoantigens engaged by antibodies may be broken and lead to

the generation of anti-tumor memory T cells, these cells are often

anergized or exhausted and unable to mount an effective cyto-

toxic T cell response to the tumor. Activating these T cells to

become effector cells and target tumor cells is thus a goal of



current immunotherapy approaches, most recently achieved by

blocking inhibitory signals such as CTLA-4 (Hodi et al., 2010)

and PD-1 (Brahmer et al., 2012; Topalian et al., 2012). Our data

support an alternative approach in which combining anti-tumor

cytotoxic antibody therapeutics with various immunotherapies

that boost cellular immune responses (i.e., agonistic anti-CD40

mAb) (Li and Ravetch, 2011), or antagonistic anti-CTLA-4 or

anti-PD-1 mAbs) may synergistically combine with an anti-tumor

mAb vaccinal effect to boost cellular memory formation. Thus,

our results suggest a general mechanismbywhich anti-tumor an-

tibodies can stimulate anti-tumor cellular immune responses

against a variety of tumor antigens.

Significant efforts were put toward identifying the antigen-spe-

cific T cells that mediate the vaccinal effect in this study, but

ex vivo re-stimulation (ELISPOT and intracellular cytokine stain-

ing) studies with tumor cell lysates, peptides, or irradiated tumor

cells were not sensitive enough to detect rare tumor-specific

T cells. Regardless, conclusions regarding the specificity of the

anti-tumor vaccinal effect T cell response can be made. Mice

primed with mAb and hCD20+ EL4 lymphoma cells rejected lym-

phoma re-challenge with hCD20+ EL4 cells but not wild-type EL4

cells (Figure 1C). This result suggests that the vaccinal effect T cell

response is directed at the hCD20 neoantigen and that no detect-

able epitope-spreading occurs in this model. We have confirmed

that the T cell response is, at least in part, directed at hCD20

because mice primed with mAb and hCD20+ EL4 lymphoma re-

jected re-challenge with a distinct tumor cell line expressing

hCD20, but not the same cell line expressing a control antigen

(Figure1D).Whether all vaccinal effectanti-tumorTcell responses

are solely directed at the mAb-targeted antigen, as in the current

EL4 tumor model, or whether different tumor models or different

tumor microenvironments (i.e., lymphoid versus solid tumors)

will result in different mAb-induced anti-tumor T cell responses

and epitope spreading remains unclear.Whether combining pas-

sive anti-tumor mAb with checkpoint inhibitor blockade or adju-

vants will result in synergistically enhanced epitope spreading

and anti-neoantigen T cell responses is also unknown.

Our studies in FcgR-humanized mice with hIgG1 anti-hCD20

mAb-mediated ADCC of hCD20+ tumor cells clearly demon-

strate that hFcgRIIIA is both necessary and sufficient for

ADCC-mediated clearance of antibody-coated tumor cells;

hFcgRIIA plays no role in this process (Figure 5). These results

correspond to findings in humans that FCGR3A polymorphisms

correlate with response rates in lymphoma patients treated with

anti-CD20 mAb (Cartron et al., 2002) or breast cancer patients

treated with anti-Her2 mAb (Musolino et al., 2008). Importantly,

FcgR signaling is required for ADCC in vivo, rather than simple

cross-linking of antigen (de Haij et al., 2010). Because they solely

express hFcgRIIIA, dogma has dictated that NK cells are the

main mediators of ADCC in humans (Seidel et al., 2013). Further

promoting the belief that NK cells are the major mediators of

ADCC in humans, NK cells from human peripheral blood are

routinely used during in vitro ADCC assays, which inadequately

attempt to artificially re-create a complex in vivo process. None-

theless, it has been demonstrated that CLOD-sensitive macro-

phages (Uchida et al., 2004) (Figure S7A), but not NK cells, are

required for ADCC by mIgG in the context of murine FcgRs.

This was partially thought to be due to the lone expression of
FcgRIII on murine NK cells (Otten et al., 2008), which weakly in-

teracts with mouse antibody Fc compared to FcgRIV. Therefore,

we have now clearly determined the cellular requirements for

hIgG1-triggered ADCC mediated by human FcgRs and demon-

strate that CLOD-sensitive macrophages mediate ADCC of anti-

body-coated target cells in vivo in the context of hIgG1 antibody

and the human FcgR system (Figures S7B and S7C). This result

is significant, because new therapies aimed at augmenting hu-

man NK cell activity in vivo to enhance ADCC of mAb-targeted

tumor cells are currently under investigation. Further studies

determining any functional differences between murine and hu-

man NK cells will shed more light on this important matter.

The results reported here highlight the importance of properly

engineering antibody therapeutics to engage the appropriate

FcgRs to mediate appropriate effector functions. Current

efforts to augment anti-tumor antibodies have only focused

on enhancing their cytotoxic effects by modulating hIgG1 Fc

interactions with hFcgRIIIA to augment ADCC by innate cells,

as exemplified by the next-generation glyco-engineered anti-

hCD20 mAb, obinutuzumab (Goede et al., 2014). Obinutuzumab

is afucosylated for augmented affinity to only hFcgRIIIA, and

accordingly, extends survival by �1 year in CLL patients when

directly compared to an unmodified anti-CD20 antibody (Rituxi-

mab). However, afucosylation of obinutuzumab does not affect

Fc engagement of hFcgRIIA, which is the sole activating hFcgR

expressed on human antigen-presenting DCs for engagement of

immune complexes and stimulation of T cell responses. Thus,

our current results argue that an ideal anti-tumor therapeutic

should not only optimally engage hFcgRIIIA for cytotoxic effector

function, but also hFcgRIIA on DCs in order to induce long-term

cellular anti-tumor immunity.

EXPERIMENTAL PROCEDURES

Cell Lines and Mice

EL4-WT and 293T cells were obtained from ATCC and maintained in Dulbec-

co’s minimum essential medium (DMEM; Life Technologies) supplemented

with 10% fetal bovine serum (Life Technologies), 100 U/ml of penicillin, and

100 mg/ml of streptomycin (Life Technologies). EL4-hCD20 cells were obtained

from Oliver Press (Fred Hutchinson Cancer Research Center, Seattle, WA) with

permission from Josée Golay (Ospedali Riuniti di Bergamo, Bergamo, Italy) and

maintained in RPMI-1640 medium (Life Technologies) supplemented with 10%

fetal bovine serum, 100 U/ml of penicillin, and 100 mg/ml of streptomycin. B6BL

cells, a spontaneous B cell lymphoma line isolated from p53fl/flCD19-Cre+ mice

on pure B6 genetic background, have been previously described (Robbiani

et al., 2009) and were retrovirally transduced with constructs encoding either

hCD20 or mCD20 (pVPack Vectors, Agilent Technologies), selected to make

stable cell lines, and sorted for CD20+ cells, as described previously (Li and

Ravetch, 2011). C57BL/6 mice were purchased from Jackson Laboratories.

Fcer1g–/– (Takai et al., 1994), Fcgr4–/– (Nimmerjahn et al., 2010), FcRa null

(Smith et al., 2012), FCGR3A/B-Tg (Li et al., 1996) (crossed to FcRa null

mice), and FCGR2A-Tg (McKenzie et al., 1999) (crossed to Fcer1g–/–Fcgr2b�/�

mice) mice on the C57BL/6 genetic background have been previously

described. FcgR-humanized mice, which express all hFcgRs on the FcRa null

C57BL/6 genetic background, have been described (Smith et al., 2012).

Fcgr4flox mice (Nimmerjahn et al., 2010) were crossed with mice expressing

cre recombinase under the control of CD11c promoter/enhancer regions

(B6.Cg-Tg(Itgax-cre)1-1Reiz/J mice, Jackson Laboratories). hCD20-Tg mice

were kindly provided by Dr. Andrew Chan (Genentech) and crossed onto the

FcgR-humanized background. All mice were maintained in a specific path-

ogen-free facility at the Rockefeller University, and all studies were approved

by the Rockefeller University Institutional Animal Care and Use Committee.
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Antibodies, Flow Cytometry, and Other Reagents

To generate CAT-13.6E12 and 2B8 mAb constructs, total RNA was obtained

from hybridoma cells (DSMZ and ATCC, respectively), and cDNA was gener-

ated by using SuperscriptIII reverse transcriptase (Life Technologies) and

immunoglobulin gene-specific primers. The VH and VK genes were amplified

by PCR and cloned in frame into mammalian expression vectors with mouse

IgG2a, mouse IgG1, mouse DA265 mutant, mouse Kappa, hIgG1, or huKappa

Fc backbones. The human G236A, A330L/I332E, and GASDALIE Fc mutants

were generated by site-directed mutagenesis with PCR amplification of the

entire vector, using complementary primers containing the desired point mu-

tations, as described (Li and Ravetch, 2011). Antibodies were produced by

transient transfection of 293T cells and subsequent protein G purification

from culture supernatants, as described (Nimmerjahn et al., 2005). Anti-

mCD4 antibody (clone GK1.5) with a hIgG1 backbone and containing

GASDALIE point mutations was generated previously (Smith et al., 2012). Flu-

orescently conjugated antibodies and staining procedures are listed in the

Supplemental Experimental Procedures. To deplete macrophages in vivo,

mice received 200 ml of clodronate liposomes or PBS liposomes intravenously

(i.v.) through lateral tail veins (Clophosome-A, Formumax).

Tumor Model

For the primary tumor challenge, mice were injected i.v. through lateral

tail veins with 5 3 105 EL4-hCD20 cells in 200 ml PBS on day 0. Mice then

received intraperitoneal (i.p.) injections of 100 mg of antibody in 200 ml of

PBS on days 1, 4, 7, 10, and 13. Survival was assessed daily. In some exper-

iments, 90 days after primary tumor challenge, surviving mice were re-chal-

lenged i.v. with 5 3 106 EL4-hCD20 or EL4-WT cells, with survival assessed

daily. In experiments in which hIgG1 antibodies or mutants were administered,

FcgR-humanized mice were given 5 3 105 EL4-hCD20 cells in 200 ml PBS on

day 0, with 250 mg of antibody in 200 ml of PBS given i.p. on days 1 and 2. Sur-

viving mice were re-challenged with 5 3 106 EL4-hCD20 cells on day 60. In

some experiments, mice were re-challenged i.v. with 5 3 104 B6BL cells ex-

pressing either hCD20 or mCD20.

Inadoptive transfer experiments, splenocytes frommice30daysafter primary

tumor challengewere harvested and red blood cells were lysed. In some cases,

CD3+ cells were negatively selected using magnetic beads (Miltenyi Biotec).

Then, 503 106 total splenocytes or 153 106 CD3+ cells were adoptively trans-

ferred into naive C57BL/6 mice. One day later, the mice were challenged with 5

3 105 EL4-hCD20 cells in 200 ml PBS, with survival assessed daily.

Statistics

Statistical differences between survival rates were analyzed by comparing Ka-

plan-Meier curves using the log-rank test and GraphPad Prism Software. All

other statistical differences were compared using the Student’s t test analysis.
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